Properties of distance spaces with power triangle inequalities
Journal Title: Карпатські математичні публікації - Year 2016, Vol 8, Issue 1
Abstract
Metric spaces provide a framework for analysis and have several very useful properties. Many of these properties follow in part from the triangle inequality. However, there are several applications in which the triangle inequality does not hold but in which we may still like to perform analysis. This paper investigates what happens if the triangle inequality is removed all together, leaving what is called a distance space, and also what happens if the triangle inequality is replaced with a much more general two parameter relation, which is herein called the "power triangle inequality". The power triangle inequality represents an uncountably large class of inequalities, and includes the triangle inequality, relaxed triangle inequality, and inframetric inequality as special cases. The power triangle inequality is defined in terms of a function that is herein called the power triangle function. The power triangle function is itself a power mean, and as such is continuous and monotone with respect to its exponential parameter, and also includes the operations of maximum, minimum, mean square, arithmetic mean, geometric mean, and harmonic mean as special cases.
Authors and Affiliations
D. Greenhoe
The Bargmann type reduction for some Lax integrable two-dimensional generalization of the relativistic Toda lattice
The possibility of applying the method of reducing upon finite-dimensional invariant subspaces, generated by the eigenvalues of the associated spectral problem, to some two-dimensional generalization of the relativistic...
On an approach to the construction of the Friedrichs and Neumann-Krein extensions of nonnegative linear relations
Let L0 be a closed linear nonnegative (probably, positively defined) relation ("multivalued operator") in a complex Hilbert space H. In terms of the so called boundary value spaces (boundary triples) and corresponding We...
Superextensions of three-element semigroups
A family $\mathcal{A}$ of non-empty subsets of a set $X$ is called an {\em upfamily} if for each set $A\in\mathcal{A}$ any set $B\supset A$ belongs to $\mathcal{A}$. An upfamily $\mathcal L$ of subsets of $X$ is said to...
On estimates for the Jacobi transform in the space Lp(R+,Jα,β(x)dx)
In this paper, we prove the estimates for the Jacobi transform in Lp(R+,Jα,β(x)dx) as applied to some classes of functions characterized by a generalized modulus of continuity.
On the growth of a composition of entire functions
Let $\gamma$ be a positive continuous on $[0,\,+\infty)$ function increasing to $+\infty$ and $f$ and $g$ be arbitrary entire functions of positive lower order and finite order. In order to $$ \lim\limits_{r\to+\infty}...