Smart hydrogels for 3D bioprinting

Journal Title: International Journal of Bioprinting - Year 2015, Vol 1, Issue 1

Abstract

Hydrogels are 3D networks that have a high water content. They have been widely used as cell carriers and scaffolds in tissue engineering due to their structural similarities to the natural extracellular matrix. Among these, “Smart” hydrogels refer to a group of hydrogels that is responsive to various external stimuli such as pH, temperature, light, electric, and magnetic field. Combining the potential of 3D printing and smart hydrogels is an exciting new paradigm in the fabrication of a functional 3D tissue. In this article, we provide a state-of-the-art review on smart hydrogels and bioprinting. We identify the critical material properties needed for the most commonly used bioprinting techniques, namely extrusion-based, inkjet-based, and laser-based techniques. The latest progress in different smart hydrogel systems and their applications in bioprinting are presented. The challenges of printing these hydrogel systems are also highlighted. Lastly, we present the potentials and the future perspectives of smart hydrogels in 3D bioprinting.

Authors and Affiliations

Shuai Wang, Jia Min Lee, Wai Yee Yeong

Keywords

Related Articles

Fabrication of biomimetic placental barrier structures within a microfluidic device utilizing two-photon polymerization

The placenta is a transient organ, essential for development and survival of the unborn fetus. It interfaces the body of the pregnant woman with the unborn child and secures transport of endogenous and exogenous substanc...

Mechanisms and modeling of electrohydrodynamic phenomena

The purpose of this paper is to review the mechanisms of electrohydrodynamic (EHD) phenomenon. From this review, researchers and students can learn principles and development history of EHD. Significant progress has been...

Concentric bioprinting of alginate-based tubular constructs using multi-nozzle extrusion-based technique

Bioprinting is a layer-by-layer additive fabrication technique for making three-dimensional (3D) tissue and organ constructs using biological products. The capability to fabricate 3D tubular structure in free-form or ver...

Coaxial nozzle-assisted electrohydrodynamic printing for microscale 3D cell-laden constructs

Cell printing has found wide applications in biomedical fields due to its unique capability in fabricating living tissue constructs with precise control over cell arrangements. However, it is still challenging to print c...

3D bioprinting processes: A perspective on classification and terminology

This article aims to provide further classification of cell-compatible bioprinting processes and examine the concept of 3D bioprinting within the general technology field of 3D printing. These technologies are categorize...

Download PDF file
  • EP ID EP678629
  • DOI -
  • Views 201
  • Downloads 0

How To Cite

Shuai Wang, Jia Min Lee, Wai Yee Yeong (2015). Smart hydrogels for 3D bioprinting. International Journal of Bioprinting, 1(1), -. https://europub.co.uk./articles/-A-678629